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SUMMARY 

I AAR- I 1 

The problem of determining the longitudinal and t ransversal  contours mini- 

mizing the drag of a flat-top body i n  hypersonic flow is considered under the  

hypotheses that the pressure  distribution is Newtonian and the skin-friction 

coefficient is constant. It is a l so  assumed that the body is slender aad homothetic 

and that certain arbi t rar i ly  prescribed values are assigned t o  - - at most - - the 

l if t ,  the  pitching moment, the planform area .  the frontal area, the wetted area, 

the volume, the length. and the thickness. Two similari ty laws are determined. 

-e.c-, 
(""This work was supported by the Langley Research Center of the National 

Aeronautics and Space Administration under Grant No. NGR-44-006-034. 

(""')Professor of Astronautics and Director of the Aero-Astronautics Group, 

Department of Mechanical and Aerospace Engineering and Materials Science, Rice 

University, Houston, Texas.  



2 AAR-11 ’ I 

The Similarity Law for Longitudinal Contours permits one to determine the 

optimum longitud.ina! contour of a body of arbi t rary t ransversal  contour from the 

known optimum longitudinal contour of a reference body (a body of semicircular  

c ross  section); the aerodynamic and geometric quantities of the latter must be 

replaced by appropriate proportional quantities of the former ,  with the proportionality 

constants depending only on the prescribed t ransversal  contour. 

The Similarity Law for Transversal  Contours permits one to determine the opti- 

mum transversal  contour of a body of a rb i t ra ry  longitudinal contour from the known 

optimum transversal  contour of a reference body (a conical body); the aerodynamic 

and geometric quantities of the la t ter  must be replaced by appropriate proportional 

quantities of the former,  with the proportionality constants depending only on the 

prescribed longitudinal contour. 
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1 .  INTRODUCTION 

In 3 previous rcport  (Ref. l), the hasic theory of slender,  lifting bodies in the 

hypersonic rcginie was formulated under the following hypotheses: (a) a plane of 

symmetry exists between the left-hand and right-hand sides of the body; (b) no 

plane of symmetry exists between the upper and lower par t s ;  however, the inter-  

section of these par ts  is a curve contained in a plane perpendicular t o  the plane 

of symmetry,  called the reference plane; (c) the base plane is perpendicular to  

both the plane of symmetry and the reference plane; (d) the body is slender in  the 

longitudinal sense,  that i s ,  the square of the slope of any meridian contour is smal l  

with respect to one; (e) the body is homothetic, in the sense that each c ross  section 

is geometrically s imilar  to the base section and has the  s a m e  orientation; (f) the 

f ree-s t ream velocity is perpendicular to the base plane and, therefore, is parallel 

t o  the line of intersection of the plane of symmetry and the  reference plane; (g) the 

p re s su re  coefficient is twice the cosine squared of the angle formed by the free- 

s t r eam velocity and the normal to  each surface element; (h) the skin-friction coeffi- 

cient is constant; and (i) the contribution of the tangential forces  to the lift is 
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negligible with respect t o  the contribution of the normal forces .  D x e c t  methods 

were employed in Ref .  1. Specifically, the c lass  of flat-top bodies whose longi- 

tudinal contours a r e  power laws and whose t ransversal  contours are semielliptical 

o r  triangular was considered, and the thickness ratio, the power law exponent, 

and the elongation ratio of the c ross  section were determined s o  as to  maximize the 

lift-to-drag rat io .  

It should be noted that the above direct  methods supply results which are valid 

for only particular longitudinal and t ransversal  contours. Therefore,  it is important 

to  reformulate the minimal problem by using the indirect methods of the calculus 

of variations, that is, by eliminating any previous restriction on the class  of bodies 

being investigated. Thus, two complementary variational problems arise: (1) t o  

determine the optimum longitudinal contour for an a rb i t ra r i ly  prescribed t ransversa l  

contour; and (2) t o  determine the optinium t ransversa l  contour for an  arbi t rar i ly  

prescribed longtudinal contour. In each case,  the quantity to be minimized is the  

drag, and constraints may be imposed on aerodynamic quantities (lift and pitching 

moment) and geometric quantities (planform area, frontal  area, wetted area, volume, 
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Icngtli, and thickness). 

Since the num1x.r of possible variational problems is practically without l imit ,  

cconomy of thought lcads one to  pose the following questions: (I) Is there  any simi- 

larity law which perinits onc to determine the optimum longitudinal contour of a 

body of arbi t rary t ransversal  contour from the known optimum longitudinal contour 

of a reference body? and (2) B there  any similari ty law which permits one t o  deter-  

mine the optimum transversal  contour of a body of arbi t rary longitudinal contour 

f rom the known optimum transversal  contour of a reference body? It is the purpose 

of this paper to show that these siiiiilarity laws do exist .  By means of them, the 

results obtained in Ref .  2 for nonlifting bodies are extended to the more important 

ca se  of lifting bodies. 
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2 ’. AERODYNAMICS QUANTITIES 
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In order to relate the drag, the lift, and the pitchifig momem of a body to its 

geometry, we  define two coordinate systems (Fig. 1): a Cartesian coordinate 

system Oxyz and a cylindricad cnordinate system @.re. Fer  the Cartesian cccrdinate 

system, the origin 0 is the apex of the body; the x-axis is the intersection of the 

plane of symmetry and the reference plane, positive toward the base; the z-axis 

is contained in t h e  plane of symmetry, perpendicular to the x-axis,  and positive 

downward; and the y-axis is such that the xyz-system is right-handed. For  the 

cylindrical coordmate system, r is the distance of any point f rom the x-axis,  and 

8 measures the angular position of ths  point with respect to  the xy-plane. 

We refer t o  the class  of flat-top bodies (Fig. 2)  whose lower surface is described 

by the relationshp 

r = r (x, 0) 

Thus, in the light of hypotheses (a) through (d) and (f) through (i) of the introduction, 

the drag  D, the lift L, and the pitching moment M p e r  unit f ree-s t ream dynamic 

pressure q are  given by (Ref. 1) 
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where R is the length of the body and Cf the skin-friction coefficient. 

2.1. Honiotlietic Body. Next, we employ hypothesis (e) and focus our attention 

on the class of bodies such that any transversal  contour is geometrically s imi la r  

to the base contour and has the same orientation. The geometry of these homothetic 

bodies is given by 

7 AAR-I I 

where 

r = 2, ( , - /u)A(?)B(G) 

denotes the thickness ratio evaluated i n  the  meridian plane 6 = n/2 and 
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denotes the elongation ratio evaluated in the transversal  plane x = A .  Also, 

5 = x/A denotes a nondimensional abscissa,  .4(',) a function describing ths  l o n g -  

tudinal contour, and B ( e )  a function describing the transversal  contoiir s l c h  that 

A(0) =I 0 , A ( l )  = 1 

B(0)  = 1 , B(n/2) = u 

In the light of Eq. (3), the drag, the lift, and the pitching moment of a homothetic 

body can be written as (Ref. 1) 

where I1 , . . . . , I4 denote the following integrals depending on the longitudinal contour: 

A i 2  d< 
- r Q  

' 3  - Jo 

- 2  r Q  I 4  = I Jo SAA d< 
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and J1 , . . . . , J4 denote the following integrals depending on the t ransversal  

contour : 

p 2  r -- 
' B4/(E$ + h2)J (B s in  4 - B cos 0 )  de L J, = ( 4 / ~  ) 

0 
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3 .  GEOMETRIC QUANTITIES 

For  the class  of flat-top bodies whose lower surface is described by Eq. (l), 

the planform area S, the frontal area S f ,  the wetted area S ,  , and the vo1iin;e 1’ 

are given by 

F A  rn/2 ’ r d  
Sw = 2 ~ y / r 2  + r g 2  dxd8 + 2 J r ( x ,  0) dx 

’ 0  “0 0 

P R  4n/2 
v = I  ’ r d x d e  

Jo j o  

In particular, i f  the body is homothetic, Eqs . (10) become 

Sf = 9, 2 2  T 16J6  

S, = R 2 ‘r 17J7 

3 2  V = 9, T 18J8 

where 
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I 6  = 1 

and 

J5 = 2 / ~ (  

Other possible constraints may have the form 

Const = J? and/or Const = 4~ 

meaning the length and/or the thickness are given. 
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4. SIMILARITY LAW FOR OPTIMUM LONGITUDINAL CONTOURS 

Now, suppose that the t ransversal  contour B(8)  is given, meaning that the 

quantities J1 , . . . . , J, a r e  known a pr ior i .  Assnme that the skin-friction 

coefficient is given and that certairr a b i t r z r i l j i  prescribed vaiues are assigned 

to - - at most - - the  lift, the pitching moment, the planform area ,  the frontal 

a rea ,  the wetted a rea ,  the volume, the length, and the thickness. Observing that 

the right-hand sides of Eqs. (7 ) ,  (1 l), and (14) depend on the parameters  a ,  T and 

the longitudinal contour A ( 5 )  through the integrals I , . . . . , I8 , we formulate 

the following variational problem : "In the class  of parameters  A ,  T and functions 

A ( 5 )  w h c h  satisfy thc conditions (6-1), (7-2), (7-3),  (1 l), and (14), find that par t i -  

cular set  which minim zes the total drag (7-1)". 

Rather than solving this problem as stated, we introduce the following modified 

aerodynamic and geometric quantities: 



13 

and rewrite Eqs . (7) and (1 1) in the form 

3 3  N 

M/4q = P, 7 I4  

N 

s /2  = Q 2 T  I5  

2 2  N 

2Sf /7 = ?, 7 I6  

We observe that, since the transversal contour is given, the modified skin-friction 

N N N N Y 

coefficient Cf , lift L , pitching moment M , planform area S , frontal area Sf ,  

N N 

wetted area Sw , and volume V a r e  known a pr ior i .  Furthermore,  the modified 

AAR-11 
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drag  D is proportional t o  the actual drag. This being the case ,  the previous 

minimal problem is equivalent to  that of finding, in the c lass  of parameters  R, 7 

and functions A (4;) which satis@ the conditions (h- l ) ,  (141, a d  (16-2) through 

,., .. (16-7), that particxilnr set ~lrhich rn i~ in izcs  ckie fuilciionai (10-1). 

W e  note that, for a flat-top body of semicircular c ros s  section, that is, fo r  

the expressions (9) and (13) become 

with the implication that 

, 
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Since Eqs . (16) and (19) are formally identical, the following Similarity Law for  

Lon@tudinal Contours can be stated: "The parameters A ,  7 and the function 

A(C) which optimize the longitudinal contour of a body of arbi t rary c ross  section 

are identical with those optimizing the longitudinal contour of a body of semi- 

circular  cross  section providing the aerodpainic  and geometric quantities of the 

latter are replaced by the modified aerodynamic and geometric quantities (15) of 

the former".  
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5 .  SIMILARITY LAW FOR OPTIMUM TRANSVERSAL CONTOURS 

Now, suppose that the longitudinal contour A ( 5 )  is given, meaning that the 

quantities I1 , . . . . . . , I8  are known a pr ior i .  Assume that the skin-friction coef- 

ficient is Sven  and that certain arbi t rar i ly  prescribed values are assigned t o  - -  at 

most - -  the lift, the pitching moment, the planform area ,  the frontal area, the wetted 

a rea ,  the volume, the length, and the thickness. Observing that the right-hand s ides  

of Eqs. (7), (1 l), and (14) depend on the parameters  4, T and the t ransversal  contour 

B ( e )  through the integrals J , . . . . , J 8 , we formulate the following variational problem: 

"In the class  of parameters  4, 7 and functions B(8)  which satisfy the conditions (6-2), 

(Ti-2), (7-3), (ll), and (14), find that particular function which minimizes the total 

d rag  (7-1)". 

Rather than solving this problem as stated, we introduce the following modified 

aerodynamic and geometric quantities : 
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D = (1/2I1) D , 

N 

L = (1/213) L , 

7” 

s = (1/215) s , 

and rewrite Eqs . (7) and (11) in the form 

17 

N 

M = (1/3 14) M 

AAR- 1 1 

W e  observe that, since the longitudinal contour is given, the modified skin-friction 

- - 
coefficient Cf , lift L , pitching moment 6i, planform area 2 ,  frontal area gf , 

N 
N N 

wetted area Sw , and volume V a r e  known a pr ior i .  Furthermore,  the modified drag  D 
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is proportional to  the actual drag. This being the case,  the previous minimal problem 

is equivalent to that of finding, i n  the class of parameters -L, T and functions B(e)  

which satisfy the conditions (6-2), (14), and (21-2) through (21-3, t k t  parfic-dar set 

which minimizes the functional (21 - 1)  

W e  note that, for a conical body, that i s ,  for 

A = F  -2 J 

the expressions (8) and (12) become 

11 = 1/2 , 12 = 1/2 , 

I 5  = 1/2 , I 6  = 1 ,  

with the implication that 

13 = 1/2 , I d  = 1/3 

(23) 

I 7  = 1/2 , I 8  = 1/3 
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2 D/q 

2 L/q 

3 M/q 

2s 

sf 

sw 

3 v  

= t 2 T  ( T ~  J1 + Cf J2 ) 

- - t2?J3 

= & T  3 3  J4 

= t2, J5 

= A2'r2J6 

= &'T J, 

= & 7 J 8  3 2  

Since Eqs.  (21) and (24) are formally identical, the following Similarity Law for 

Transversal  Contours can be stated: 'The parameters  A, T and the function B(6) 

which optimize the t ransversal  contour of a body of a rb i t ra ry  longitudinal contour 

are identical with those optimizing the t ransversal  contour of a conical body providing 

the aerodynamic and geometric quantities of the la t ter  are replaced by the modified 

aerodynamic and geometric quantities (20) of the former".  
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6 .  DISCUSSION AND CONCLUSIONS 

h- the previous sections, the minimum drag  problem is considered for the 

c lass  of flat-top, slender,  Immothetic bodies flyirig at hypersonic speeds under 

the assumpt i s~s  that thc pressure  distribution is Newtonian and the skin-friction 

coefficient is constant. It is also assumed that cer ta in  arbi t rar i ly  prescribed 

values a r e  assigned t o  - -  at most - -  the lift, the pitching moment, the planform 

area ,  the frontal a r ea ,  the wetted a rea ,  the volume, the length, and the thickness. 

Under these hypotheses, two similari ty laws are obtained. 

The Similarity Law for Longitudinal Contours permits  one to  determine the 

optimum lon@tudinal contour of a body of a rb i t ra ry  c r o s s  section from the known 

optimum longitudinal contour of a reference body (a body of semicircular  c ros s  

section). Conversely, the Similarity Law for Transversal  Contours permits one 

to  determine the optimum transversal  contour of a body of a rb i t ra ry  longitudinal 

contour from the known optimum transversal  contour of a reference body (a conical 

body). Finally, the simultaneous u s e  of these s imilar i ty  laws leads to  the idea 

that - -  by combining the resul ts  valid for  flat-top bodies of semicircular  c ros s  
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section with those valid for conical bodies - -  truly three-dimensional, slender, 

homothetic, lifting bodies of minimum drag can be determined. 
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LIST OF CAPTIONS 

Fig. 1. Coordinate system. 

Fig. 2 .  Flat-top body. 
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